
Optimized Threshold
Implementations: Minimizing

the Latency of Secure
Cryptographic Accelerators

Dušan Božilov, Miroslav Knežević, Ventzislav Nikov

November 13th, 2019

1

Threshold Implementations (TI)

• Boolean masking scheme

• Glitch resistant

• Three key properties
• Correctness

• Non-completeness

• Uniformity

• Two variants
• td + 1

• d + 1

𝑥0 𝑥1 𝑥2

𝑦0 𝑦1 𝑦2

𝑓0 𝑓1 𝑓2

𝑥

𝑦

𝑓

2

d+1 TI

• Number of input shares is always d+1, where d is security order

• Number of output shares depends on the algebraic degree t as well,
and is lower bound by 𝑑 + 1 𝑡

𝑦 = 𝑎𝑏
𝑦 = 𝑎0 + 𝑎1 𝑏0 + 𝑏1
𝑦0 = 𝑎0𝑏0
𝑦1 = 𝑎0𝑏1
𝑦2 = 𝑎1𝑏0
𝑦3 = 𝑎1𝑏1

𝑎

𝑏
𝑦

𝑎0
𝑏0

𝑎0
𝑏1

𝑎1
𝑏0

𝑎1
𝑏1

𝑦0

𝑦1

𝑦2

𝑦3

3

TI properties

• TI should preserve the functionality of the operation we are trying to
protect (correctness)

• Any input share may appear only once in any given output share

• Output should preserve the distribution of the input (Uniformity)
• Mandates registers between non-linear operations

• Requires randomness injection at the end of every non-linear operation if the
result is compressed afterward

𝑦2 = 𝑎0𝑏1 + 𝑎0 ✓

𝑦3 = 𝑎0𝑏2 + 𝑎_1𝑐_0 

4

S-Box decomposition

S-Box

Q1

Decomposition

S-Box

TI

Q1 Q2 Q3

Q2 Q3

S-Box

TI

S-Box

5

From sharing to table

𝑦 = 𝑎𝑏 + 𝑐

𝑎, 𝑏, 𝑐
0 0 0
0 1 ∗
1 0 ∗
1 1 1

𝑦0= 𝑎0𝑏0 + 𝑐0
𝑦1 = 𝑎0𝑏1
𝑦2 = 𝑎1𝑏0
𝑦3= 𝑎1𝑏1 + 𝑐1

• Rows represent one output share and columns represent input variables

• Values represent allowed input share in the output share of a given variable

• Number of variables is the number of columns in the table

6

From table to sharing

𝑦 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐

𝑦0= 𝑎0𝑏0 + 𝑎0𝑐0 + 𝑏0𝑐0
𝑦1= 𝑎0𝑏1 + 𝑎0𝑐1 + 𝑏1𝑐1
𝑦2= 𝑎1𝑏0 + 𝑎1𝑐0
𝑦3= 𝑎1𝑏1 + 𝑎1𝑐1
𝑦4 = 𝑏0𝑐1
𝑦5 = 𝑏1𝑐0

• Number of shares is higher than the lower bound of 𝑑 + 1 𝑡 = 4

0 0 0
0 1 1
1 0 0
1 1 1
∗ 0 1
∗ 1 0

7

From table to sharing

• Table implicitly satisfies the non-completeness property

• However, we need to check for correctness
• For each monomial in the ANF all combinations of its share indices are

present
𝑦 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐

𝑎 𝑏 𝑐
0 0 0
0 1 1
1 0 0
1 1 1
0 0 1
1 1 0

𝑎 𝑏
0 0
0 1
1 0
1 1
0 0
1 1

1
2
3
4

𝑎 𝑐
0 0
0 1
1 0
1 1
0 1
1 0

1
2
3
4

𝑏 𝑐
0 0
1 1
0 0
1 1
0 1
1 0

1
4

2
3

𝑎 𝑏 𝑐
0 0 0
0 1 1
1 0 0
1 1 1
0 0 1
1 1 0
0 1 0
1 0 1

1
2
3
4
5
6
7
8

𝑦 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏𝑐

8

Table of a 𝑛-bit function of degree 𝑡

• Table is optimal if it has the minimum number of rows while still
satisfying correctness property

• A table 𝐷 can be used to share any 𝑛-bit function of degree 𝑡 iff every
monomial of 𝑡 input variables can be shared correctly
• For any chosen 𝑡 columns from 𝐷 all input share combinations are present

• Optimal sharing is not unique, hence multiple optimal tables exist

• Two tables 𝐷1 and 𝐷2 are conjugate if there they are both optimal
but they contain no same row between the two of them

9

Optimal sharing of a 2-bit function of degree
1 for any order 𝑑
• Number of rows is 𝑑 + 1

• Trivial solution where 𝑖-th row is equal to 𝑖, 𝑖

• We can create 𝑑 + 1 conjugate table by rotating the index in the
second column

𝑎 𝑏 𝑎 𝑏

𝐷0 =
0 0
1 1
2 2

0
1
2

0
1
2

𝑎 𝑏 𝑎 𝑏

𝐷1 =
0 1
1 2
2 0

0
1
2

1
2
0

𝑎 𝑏 𝑎 𝑏

𝐷2 =
0 2
1 0
2 1

0
1
2

2
0
1

10

Optimal sharing of n-bit functions of degree
n-1 for any order d
• Start from optimal conjugate 𝑑 + 1 tables for 𝑛 = 2 of degree 1

• Given 𝑑 + 1 optimal conjugate tables with 𝑛 columns for functions of
degree 𝑛 − 1 construct 𝑑 + 1 optimal conjugate tables with 𝑛 + 1
columns for functions of degree 𝑛

• Start from 𝑑 + 1 optimal and conjugate tables 𝐷0, … , 𝐷𝑑 with 𝑛
columns and 𝑑 + 1 𝑛−1 rows

• Obtain tables 𝑇0, … , 𝑇𝑑 with 𝑛 + 1 columns and 𝑑 + 1 𝑛 rows
• For 𝑇𝑗 append a column to 𝐷𝑖 where each value is equal to 𝑖 + 𝑗 𝑚𝑜𝑑 (𝑑 + 1)

and add them as new rows in 𝑇𝑗

11

Example for 𝑛 = 3 and 𝑑 = 2

𝐷0 =
0 0
1 1
2 2

, 𝐷1 =
0 1
1 2
2 0

, D2 =
0 0
1 1
2 2

𝑇0 =

0
𝐷0 0

0
1

𝐷1 1

1
2

𝐷2 2

2

, 𝑇1 =

1
𝐷0 1

1
2

𝐷1 2

2
0

𝐷2 0

0

, T2 =

2
𝐷0 2

2
0

𝐷1 0

0
1

𝐷2 1

1

12

Application to PRINCE cipher

• We have applied our sharing construction to TI of PRINCE cipher

• S-Box is of degree 3 with 4-bit input

• First and second order implementation

• Compared to the previously known PRINCE TI where S-Box
decomposition is used

13

DOM-like remasking of first order TI PRINCE

• Obtained shares have complementary domains that can use the same
randomness

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

+0
+𝑅1
+𝑅2
+𝑅3
+𝑅3
+𝑅2
+𝑅1
+0

14

Results

• We clearly outperform the previous PRINCE TI implementation with
respect to latency

• First order implementation consumes less energy despite higher
power consumption

15

TVLA of first order implementation
PRNG off

1 million traces
PRNG on

100 million traces

1st order

2nd order

16

Future work

• Explore other cases where degree of the n-bit function is n-2 or
smaller

• Application to other use cases

• Remasking optimization considerations

17

Thank you!
Questions

18

